Quantitative Aptitude Ques 1292

Question: Directions: In the following questions, two equations numbered I and II have been given. You have to solve both the equation and mark the correct answer. [IBPS (PO) Pre 2011]

I. $ 2x^{2}+23x+63=0 $
II. $ 4y^{2}+19y+21=0 $

Options:

A) $ x<y $

B) $ x>y $

C) $ x\ge y $

D) $ x\le y $

E) Relationship between x and y cannot be Established

Show Answer

Answer:

Correct Answer: A

Solution:

  • I. $ 2x^{2}+23x+63=0 $

$ \Rightarrow $ $ 2x^{2}+14x+9x+63=0 $

$ \Rightarrow $ $ 2x(x+7)+9(x+7)=0 $

$ \Rightarrow $ $ (x+7)(2x+9)=0 $

$ \Rightarrow $ $ x=-7, $ $ x=-\frac{9}{2} $ II. $ 4y^{2}+19y+21=0 $

$ \Rightarrow $ $ 4y^{2}+12y+7y+21=0 $

$ \Rightarrow $ $ 4y,(y+3)+7,(y+3)=0 $

$ \Rightarrow $ $ (y+3)(4y+7)=0 $

$ \therefore $ $ y=-,3, $ $ y=-\frac{7}{4} $ Hence, $ y>x $