Quantitative Aptitude Ques 1287

Question: Let d be a two digit number. If half of d exceeds one-third of d by the sum of the digits in d, then the sum of the digits in d is [United India Insurance (AAO) 2012]

Options:

A) 6

B) 8

C) 9

D) 15

E) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • Let d be $ 10x+y. $ According to the question, $ \frac{10x+y}{2}-\frac{10x+y}{3}=x+y $

$ \Rightarrow $ $ 3,(10x+y)-2,(10x+y)=6,(x+y) $

$ \Rightarrow $ $ 30x+3y-20x-2y=6,(x+y) $

$ \Rightarrow $ $ 10x+y=6(x+y) $

$ \Rightarrow $ $ 4x=5y $

$ \Rightarrow $ $ \frac{x}{y}=\frac{5}{4} $ Then, sum of digits can be 9 as $ (x+y) $ is in the multiple of $ (5+4=9). $