Question: If $ \frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=1, $ then the value of $ \frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c} $
Options:
A) 1
B) 2
C) 3
D) 4
Show Answer
Answer:
Correct Answer: D
Solution:
- Given, $ \frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=1 $
(i)
On adding 3 in Eq, (i) on both sides, we get
$ ( \frac{a}{1-a}+1 )+( \frac{b}{1-b}+1 )+( \frac{c}{1-c}+1 )=3+1=4 $
$ \Rightarrow $ $ \frac{a+1-a}{1-a}+\frac{b+1-b}{1-b}+\frac{c+1-c}{1-c}=4 $
$ \therefore $ $ \frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=4 $