Quantitative Aptitude Ques 1278
Question: Given that $ a+b+c=2 $ and $ ab+bc+ca=1, $ then the value of $ {{(a+b)}^{2}}+{{(b+c)}^{2}}+{{(c+a)}^{2}}, $ is
Options:
A) 10
B) 16
C) 6
D) 8
Show Answer
Answer:
Correct Answer: C
Solution:
- Given, $ (a+b+c)=2 $ and $ ab+bc+ca=1 $
Now, $ {{(a+b)}^{2}}+{{(b+c)}^{2}}+{{(c+a)}^{2}} $
$ =a^{2}+b^{2}+2ab+b^{2}+c^{2}+2bc+c^{2}+a^{2}+2ca $
$ =a^{2}+b^{2}+c^{2}+2ab+2bc+2ca+a^{2}+b^{2}+c^{2} $
$ ={{(a+b+c)}^{2}}a^{2}+b^{2}+c^{2} $
$ ={{(a+b+c)}^{2}}+{{(a+b+c)}^{2}}-2ab-2bc-2ca $
$ =2{{(a+b+c)}^{2}}-2(ab+bc+ca) $
$ =2\times {{(2)}^{2}}-2\times (1)=8-2=6 $