Quantitative Aptitude Ques 1267

Question: If $ a=\frac{\sqrt{3}+1}{\sqrt{3}-1} $ and $ b=\frac{\sqrt{3}-1}{\sqrt{3}+1}, $ the value of $ ( \frac{a^{2}+ab+b^{2}}{a^{2}-ab+b^{2}} ) $ is

Options:

A) $ \frac{15}{13} $

B) $ \frac{16}{13} $

C) $ \frac{11}{13} $

D) $ \frac{12}{13} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ a=\frac{(\sqrt{3}+1)}{(\sqrt{3}-1)}\times \frac{(\sqrt{3}+1)}{(\sqrt{3}+1)}=\frac{{{(\sqrt{3}+1)}^{2}}}{{{(\sqrt{3})}^{2}}-{{(1)}^{2}}} $ [by rationalisation] $ =\frac{3+1+2\sqrt{3}}{3-1}=\frac{4+2\sqrt{3}}{2}=2+\sqrt{3} $ $ a^{2}={{(2+\sqrt{3})}^{2}}=4+3+4\sqrt{3}=(7+4\sqrt{3}) $ $ b^{2}={{(2-\sqrt{3})}^{2}}=4+3-4\sqrt{3}=(7-4\sqrt{3}) $ $ ab=\frac{(\sqrt{3}+1)}{(\sqrt{3}-1)}\times \frac{(\sqrt{3}-1)}{(\sqrt{3}+1)}=1 $ Now, $ \frac{a^{2}+ab+b^{2}}{a^{2}-ab+b^{2}}=\frac{a^{2}+b^{2}+ab}{a^{2}+b^{2}-ab} $ $ =\frac{(7+4\sqrt{3})+(7-4\sqrt{3})+1}{(7+4\sqrt{3})+(7-4\sqrt{3})-1}=\frac{15}{13} $