Quantitative Aptitude Ques 1267
Question: If $ a=\frac{\sqrt{3}+1}{\sqrt{3}-1} $ and $ b=\frac{\sqrt{3}-1}{\sqrt{3}+1}, $ the value of $ ( \frac{a^{2}+ab+b^{2}}{a^{2}-ab+b^{2}} ) $ is
Options:
A) $ \frac{15}{13} $
B) $ \frac{16}{13} $
C) $ \frac{11}{13} $
D) $ \frac{12}{13} $
Show Answer
Answer:
Correct Answer: A
Solution:
- $ a=\frac{(\sqrt{3}+1)}{(\sqrt{3}-1)}\times \frac{(\sqrt{3}+1)}{(\sqrt{3}+1)}=\frac{{{(\sqrt{3}+1)}^{2}}}{{{(\sqrt{3})}^{2}}-{{(1)}^{2}}} $
[by rationalisation]
$ =\frac{3+1+2\sqrt{3}}{3-1}=\frac{4+2\sqrt{3}}{2}=2+\sqrt{3} $
$ a^{2}={{(2+\sqrt{3})}^{2}}=4+3+4\sqrt{3}=(7+4\sqrt{3}) $
$ b^{2}={{(2-\sqrt{3})}^{2}}=4+3-4\sqrt{3}=(7-4\sqrt{3}) $
$ ab=\frac{(\sqrt{3}+1)}{(\sqrt{3}-1)}\times \frac{(\sqrt{3}-1)}{(\sqrt{3}+1)}=1 $
Now, $ \frac{a^{2}+ab+b^{2}}{a^{2}-ab+b^{2}}=\frac{a^{2}+b^{2}+ab}{a^{2}+b^{2}-ab} $
$ =\frac{(7+4\sqrt{3})+(7-4\sqrt{3})+1}{(7+4\sqrt{3})+(7-4\sqrt{3})-1}=\frac{15}{13} $