Quantitative Aptitude Ques 125

Question: The interior angle of a regular polygon exceeds its exterior angle by $ 108{}^\circ . $ The number of sides of the polygon is

Options:

A) 16

B) 12

C) 14

D) 10

Show Answer

Answer:

Correct Answer: D

Solution:

  • Let the exterior angle be x.

$ \therefore $ Interior angle $ =x+108{}^\circ $ $ \because $ $ x+x+108{}^\circ =180{}^\circ $
$ \Rightarrow $ $ 2x=72{}^\circ $
$ \Rightarrow $ $ x=36{}^\circ $

$ \therefore $ Number of sides $ =\frac{360{}^\circ }{36{}^\circ }=10 $ $ {{[ \because number,of,sides=\frac{\text{360 }{}^\circ}{exterior,angle} ]}^{{}}} $