Quantitative Aptitude Ques 1242

Question: If $ n=7+4\sqrt{3}, $ then the value of $ ( \sqrt{n}+\frac{1}{\sqrt{n}} ) $ is

Options:

A) $ 2\sqrt{3} $

B) $ 4 $

C) $ -4 $

D) $ -2\sqrt{3} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ n=7+4\sqrt{3}=7+2\times 2\times \sqrt{3} $ $ =4+3+2\times 2\times \sqrt{3}={{(2)}^{2}}+{{(\sqrt{3})}^{2}}+2\times 2\times \sqrt{3} $ $ ={{(2+\sqrt{3})}^{2}} $ $ [\because {{(a+b)}^{2}}=a^{2}+b^{2}+2ab] $ Taking square root on both sides, we get. $ \sqrt{n}=2+\sqrt{3} $ … (i)

$ \therefore $ $ \frac{1}{\sqrt{n}}=\frac{1}{2+\sqrt{3}} $ [reciprocal] $ =\frac{1}{2+\sqrt{3}}\times \frac{2-\sqrt{3}}{2-\sqrt{3}} $ [rationatising] $ =2-\sqrt{3} $ … (ii) On adding Eqs. (i) and (ii), we get $ \sqrt{n}+\frac{1}{\sqrt{n}}=2+\sqrt{3}+2-\sqrt{3}=4 $ Alternate Method Given, $ n=7+4\sqrt{3} $

$ \therefore $ $ \frac{1}{n}=\frac{1}{7+4\sqrt{3}}=\frac{1}{7+4\sqrt{3}}\times \frac{7-4\sqrt{3}}{7-4\sqrt{3}} $ [rationalising] $ =\frac{7-4\sqrt{3}}{{{(7)}^{2}}-{{(4\sqrt{3})}^{2}}} $ $ [\because (a+b)(a-b)=a^{2}-b^{2}] $ $ =\frac{7-4\sqrt{3}}{49-48}=7-4\sqrt{3} $ We know that, $ {{( \sqrt{n}+\frac{1}{\sqrt{n}} )}^{2}}=( n+\frac{1}{n}+2\times \sqrt{n}\times \frac{1}{\sqrt{n}} ) $

$ \Rightarrow $ $ ( \sqrt{n}+\frac{1}{\sqrt{n}} )=\sqrt{n+\frac{1}{n}+2} $ $ =\sqrt{7+4\sqrt{3}+7-4\sqrt{3}+2} $ $ =\sqrt{14+2}=\sqrt{16}=4 $