Quantitative Aptitude Ques 1241
Question: If $ x=\sqrt{12+\sqrt{12+\sqrt{12+\sqrt{12+…}}}} $ and $ y=\sqrt{12-\sqrt{12-\sqrt{12-\sqrt{12-…}}}}, $ then the value of $ x-y $ will be
Options:
A) 0
B) 1
C) 4
D) 2
Show Answer
Answer:
Correct Answer: B
Solution:
- $ x=\sqrt{12+\sqrt{12+\sqrt{12+}}}…=\sqrt{12+x} $
$ \Rightarrow $ $ \sqrt{12+x}=x $ is satisfied for $ x=4 $ $ y=\sqrt{12-\sqrt{12-\sqrt{12}-}}…=\sqrt{12-y} $
$ \Rightarrow $ $ \sqrt{12-y}=y $ is satisfied for $ y=3 $
$ \therefore $ $ x-y=4-3=1 $