Options:
A) $ 9+k $
B) $ 10+k $
C) $ 11-k $
D) $ k-1 $
E) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
- Let the number be $ 10x+y. $
Then, $ 10x+y=k(x+y) $ …(i)
Now, by interchanging the digits, we get the number $ 10+x. $
Now, $ 10y+x=11y+11x-10x-y $
$ =11(x+y)-k(x+y) $ [from Eq. (i)]
$ =(11-k)(x+y) $
$ \therefore $ Number is $ (11-k). $