Quantitative Aptitude Ques 1233

Question: ABCD is a trapezium with AD and BC parallel sides. E is a point on BC. The ratio of the area of ABCD to that of $ \Delta AED $ is

Options:

A) $ \frac{\overline{AD}}{\overline{BC}} $

B) $ \frac{\overline{BE}}{\overline{EC}} $

C) $ \frac{\overline{AD}+\overline{BE}}{\overline{AD}+\overline{CE}} $

D) $ \frac{\overline{AD}+\overline{BC}}{\overline{AD}} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • ABCD is a trapezium with parallel sides $ AD||BC $

$ \therefore $ Area of ABCD trapezium $ =\frac{1}{2}\times (AD+BC)\times h $ Area of $ \Delta AED=\frac{1}{2}\times AD\times h $

$ \therefore $ $ \frac{AreaofABCD}{Areaof\Delta AED}=\frac{\frac{1}{2}\times (AD+BC)\times h}{\frac{1}{2}\times AD\times h} $ $ =\frac{AD+BC}{AD}=\frac{\overline{AD}+\overline{BC}}{\overline{AD}} $