Quantitative Aptitude Ques 1233
Question: ABCD is a trapezium with AD and BC parallel sides. E is a point on BC. The ratio of the area of ABCD to that of $ \Delta AED $ is
Options:
A) $ \frac{\overline{AD}}{\overline{BC}} $
B) $ \frac{\overline{BE}}{\overline{EC}} $
C) $ \frac{\overline{AD}+\overline{BE}}{\overline{AD}+\overline{CE}} $
D) $ \frac{\overline{AD}+\overline{BC}}{\overline{AD}} $
Show Answer
Answer:
Correct Answer: D
Solution:
- ABCD is a trapezium with parallel sides $ AD||BC $
$ \therefore $ Area of ABCD trapezium $ =\frac{1}{2}\times (AD+BC)\times h $ Area of $ \Delta AED=\frac{1}{2}\times AD\times h $
$ \therefore $ $ \frac{AreaofABCD}{Areaof\Delta AED}=\frac{\frac{1}{2}\times (AD+BC)\times h}{\frac{1}{2}\times AD\times h} $ $ =\frac{AD+BC}{AD}=\frac{\overline{AD}+\overline{BC}}{\overline{AD}} $