Quantitative Aptitude Ques 1199

Question: Directions: In the following questions, two equations numbered I and II have been given. You have to solve both the equations and mark the correct answer.

I. $ 3x^{2}+29x+56=0 $
II. $ 2y^{2}+15y+25=0 $

Options:

A) If $ x<y $

B) If $ x>y $

C) If $ x\ge y $

D) If $ x\le y $

E) If relationship between $ x $ and $ y $ cannot be established

Show Answer

Answer:

Correct Answer: A

Solution:

  • I. $ 3x^{2}+29x+56=0 $

$ \Rightarrow $ $ 3x^{2}+21x+8x+56=0 $

$ \Rightarrow $ $ 3x(x+7)+8(x+7)=0 $

$ \Rightarrow $ $ (3x+8)(x+7)=0 $
$ \Rightarrow $ $ x=-7, $ $ x=-\frac{8}{3} $ II. $ 2y^{2}+15y+25=0 $

$ \Rightarrow $ $ 2y^{2}+10y+5y+25=0 $

$ \Rightarrow $ $ 2y(y+5)+5(y+5)=0 $

$ \Rightarrow $ $ (y+5)(2y+5)=0 $

$ \Rightarrow $ $ y=-5, $ $ y=-5/2 $

$ \therefore $ $ x<y $