Quantitative Aptitude Ques 1198

Question: Directions: In the following questions, two equations numbered I and II have been given. You have to solve both the equations and mark the correct answer.

I. $ 2x^{2}+23x+63=0 $
II. $ 4y^{2}+19y+21=0 $

Options:

A) If $ x<y $

B) If $ x>y $

C) If $ x\ge y $

D) If $ x\le y $

E) If relationship between $ x $ and $ y $ cannot be established

Show Answer

Answer:

Correct Answer: A

Solution:

  • I. $ 2x^{2}+23x+63=0 $

$ \Rightarrow $ $ 2x^{2}+14x+9x+63=0 $

$ \Rightarrow $ $ 2x(x+7)+9(x+7)=0 $

$ \Rightarrow $ $ (x+7)(2x+9=0 $

$ \Rightarrow $ $ x=-7, $ $ x=-\frac{9}{2} $ II. $ 4y^{2}+19y+21=0 $

$ \Rightarrow $ $ 4y^{2}+12y+7y-21=0 $

$ \Rightarrow $ $ 4y(y+3)+7(y+3)=0 $

$ \Rightarrow $ $ (y+3)(4y+7)=0 $
$ \Rightarrow $ $ y=-3, $ $ y=-\frac{7}{4} $

$ \therefore $ $ y>x $