Quantitative Aptitude Ques 1188

Question: The angle of elevation of a tower from a point 300 m above a lake is $ 30{}^\circ . $ and the angle of depression of its reflection in the lake is $ 60{}^\circ . $ Find the height of the tower.

Options:

A) 600 m

B) 450 m

C) 200 m

D) 750 m

Show Answer

Answer:

Correct Answer: A

Solution:

  • Let BC be the tower and E the point of observation 300 m above the lake surface. Draw $ AE\bot BC. $ BC’ is the reflection of the tower BC in the lake such that $ BC=BC’=hm $ $ DE=AB=300m, $ $ \angle AEC=30{}^\circ $ and $ \angle AEC’=60{}^\circ $ $ AE=BD=xm $ $ AC=BC-BA $ $ =(h-300)m $ $ AC’=BC’+BA $ $ =(h+300)m $ In right $ \Delta CAE, $ $ \tan 30{}^\circ =\frac{AC}{AE} $ $ \frac{1}{\sqrt{3}}=\frac{h-300}{x} $ … (i) In right $ \Delta CAE, $ $ \tan 60{}^\circ =\frac{AC’}{AE} $ $ \sqrt{3}=\frac{h+300}{x} $ … (ii) On dividing, $ \frac{h-300}{h+300}=\frac{\frac{1}{\sqrt{3}}}{\sqrt{3}}=\frac{1}{3} $

$ \Rightarrow $ $ 3(h-300)=(h+300) $
$ \Rightarrow $ $ h=600m $ Hence, the height of the tower is $ 600m. $