Quantitative Aptitude Ques 1182

Question: A train travels a distance of 300 km at a constant speed. If the speed of the train is increased by 5 km/h the journey would have taken 2 h less. The original speed of the train was

Options:

A) 25 km/h

B) 20 km/h

C) 28 km/h

D) 30 km/h

Show Answer

Answer:

Correct Answer: A

Solution:

  • Let the normal speed of train be x km/h. Let the normal time of train = T h

$ \therefore $ $ Time=\frac{Distance}{Speed} $ So $ \frac{300}{x}=T $ … (i) Similarly, $ \frac{300}{x+5}=T-2 $ … (ii) On solving Eqs. (i) and (ii), we get $ \frac{300}{x+5}=\frac{300}{x}-2 $
$ \Rightarrow $ $ \frac{300}{x+5}=\frac{300-2x}{x} $

$ \Rightarrow $ $ 300x=(x+5)(300-2x) $

$ \Rightarrow $ $ 300x=300x-2x^{2}+1500-10x $

$ \Rightarrow $ $ -2x^{2}+1500-10x=0 $

$ \Rightarrow $ $ x^{2}-750+5x=0 $

$ \Rightarrow $ $ x^{2}+5x-750=0 $

$ \Rightarrow $ $ x^{2}+30x-25x-750=0 $

$ \Rightarrow $ $ x(x+30)-25(x+30)=0 $

$ \therefore $ $ x=25, $ $ -30 $ Since, speed of train cannot be negative, hence speed of train is 25 km/h,