Quantitative Aptitude Ques 1176

Question: If $ a+b+c=13, $ $ a^{2}+b^{2}+c^{2}=69, $ then find b $ ab+bc+ca. $

Options:

A) $ -50 $

B) $ 50 $

C) $ 69 $

D) $ 75 $

Show Answer

Answer:

Correct Answer: B

Solution:

  • We know that, $ {{(a+b+c)}^{2}}=(a^{2}+b^{2}+c^{2})+2(ab+bc+ca) $ Now substituting the given values $ {{(13)}^{2}}=69+2(ab+bc+ca) $

$ \Rightarrow $ $ 169=69+2(ab+bc+ca) $

$ \Rightarrow $ $ \frac{169-69}{2}=ab+bc+ca $

$ \Rightarrow $ $ ab+bc+ca=50 $