Quantitative Aptitude Ques 1167
Question: If $ x^{2}-x-12=0, $ then the value of $ [x^{5}-13x^{3}-11x^{2}-x-12] $ is
Options:
A) 0
B) 1
C) 2
D) 3
Show Answer
Answer:
Correct Answer: A
Solution:
- $ x^{2}-x-12=0 $
On dividing $ x^{5}-13x^{3}-11x^{2}-x-12 $ by $ x^{2}-x-12, $ we get
$ x^{5}-13x^{3}-11x^{2}-x-12=(x^{2}-x-12)(x^{3}+x^{2}+1) $ $ =0\times (x^{3}+x^{2}+11)=0 $