Quantitative Aptitude Ques 1167

Question: If $ x^{2}-x-12=0, $ then the value of $ [x^{5}-13x^{3}-11x^{2}-x-12] $ is

Options:

A) 0

B) 1

C) 2

D) 3

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ x^{2}-x-12=0 $ On dividing $ x^{5}-13x^{3}-11x^{2}-x-12 $ by $ x^{2}-x-12, $ we get $ x^{5}-13x^{3}-11x^{2}-x-12=(x^{2}-x-12)(x^{3}+x^{2}+1) $ $ =0\times (x^{3}+x^{2}+11)=0 $