Question: A sum of Rs. 11000 was taken as loan. This is to be repaid in two equal annual. If the rate of interest is 20% compounded annually, then the value of each instalments is
Options:
A) Rs. 7500
B) Rs. 7000
C) Rs. 7100
D) Rs. 7200
Show Answer
Answer:
Correct Answer: D
Solution:
- Given, $ r=20 $ %
If a borrower pays the sum in parts, then he is paying in two instalments annually.
Let value of each be Rs. x.
Then, $ \frac{x}{1+( \frac{r}{100} )}+\frac{x}{{{( 1+\frac{r}{100} )}^{2}}}=11000 $
$ \Rightarrow $ $ \frac{x}{1+\frac{20}{100}}+\frac{x}{{{( 1+\frac{20}{100} )}^{2}}}=11000 $
$ \Rightarrow $ $ \frac{x}{\frac{6}{5}}+\frac{x}{\frac{36}{25}}=11000 $
$ \Rightarrow $ $ x( \frac{5}{6}+\frac{25}{36} )=11000 $
$ \Rightarrow $ $ x=\frac{11000\times 36}{55} $
$ \Rightarrow $ $ x=Rs\text{. 7200} $