A) $ -1 $
B) $ 1 $
C) $ 0 $
D) $ 27 $
Correct Answer: C
$ \Rightarrow $ $ x+y+3{x^{1/3}}\cdot {y^{1/3}}({x^{1/3}}+{y^{1/3}})=z $ $ [\because {{(a+b)}^{3}}=a^{3}+b^{3}+3ab(a+b)] $
$ \Rightarrow $ $ x+y-z=3\cdot {x^{1/3}}\cdot {y^{1/3}}\cdot {z^{1/3}} $ (i) Now, $ {{(x+y-z)}^{3}}+27xyz $ $ ={{(-3{x^{1/3}}\cdot {y^{1/3}}\cdot {z^{1/3}})}^{3}}+27xyz $ [from Eq. (i)] $ =-27xyz+27xyz=0 $