Quantitative Aptitude Ques 1131

Question: Directions: In the following questions two equations numbered I and II are given. You have to solve both the equations and give answer.

I. $ 2x^{2}+11x+14=0 $ II. $ 4y^{2}+12y+9=0 $

Options:

A) If $ x>y $

B) If $ x\ge y $

C) If $ x<y $

D) If $ x\le y $

E) If $ x=y $ or the relationship cannot be Established

Show Answer

Answer:

Correct Answer: C

Solution:

  • I. $ 2x^{2}+11x+14=0 $

$ \Rightarrow $ $ 2x^{2}+7x+4x+14=0 $

$ \Rightarrow $ $ x(2x+7)+2(2x+7)=0 $

$ \Rightarrow $ $ (x+2)(2x+7)=0 $

$ \Rightarrow $ $ x=-,2, $ $ -\frac{7}{2} $ II. $ 4y^{2}+12y+9=0 $

$ \Rightarrow $ $ 4y^{2}+6y+6y+9=0 $

$ \Rightarrow $ $ 2y(2y+3)+3(2y+3)=0 $

$ \Rightarrow $ $ (2y+3)(2y+3)=0 $
$ \Rightarrow $ $ y=-\frac{3}{2}, $ $ -\frac{3}{2} $

$ \therefore $ $ x<y $