Quantitative Aptitude Ques 1122

Question: A train travelling at 48 km/h crosses another train, having half its length and travelling in opposite directions at 42 km/h in 12 s. It also passes a railway platform in 46 s. The length of the railway platform is

Options:

A) 200 m

B) 300 m

C) 350 m

D) 400 m

Show Answer

Answer:

Correct Answer: D

Solution:

  • Let the length of the train travelling at $ 48km/h $ be $ xm. $ Let the length of the platform be $ ym. $ Relative speed of train $ =(48+42)km/h $ $ =90\times \frac{5}{18}m/s=25m/s $ Now, $ \frac{x+\frac{x}{2}}{25}=12 $
    $ \Rightarrow $ $ \frac{3x}{50}=12 $

$ \Rightarrow $ $ 3x=12\times 50 $

$ \Rightarrow $ $ x=4\times 50=200m $ Again, $ \frac{200+y}{45}=48\times \frac{5}{18} $

$ \Rightarrow $ $ \frac{200+y}{45}=\frac{40}{3} $

$ \Rightarrow $ $ 600+3y=1800 $

$ \Rightarrow $ $ 3y=1200 $
$ \Rightarrow $ $ y=400 $

$ \therefore $ Length of railway platform $ =400m $