Quantitative Aptitude Ques 1120

Question: If $ cosec39{}^\circ =x, $ then the value of $ \frac{1}{cose{c^{2}}51{}^\circ }+{{\sin }^{2}}39{}^\circ +{{\tan }^{2}}51{}^\circ -\frac{1}{{{\sin }^{2}}51{}^\circ {{\sec }^{2}}39{}^\circ } $ is

Options:

A) $ \sqrt{x^{2}-1} $

B) $ \sqrt{1-x^{2}} $

C) $ x^{2}-1 $

D) $ 1-x^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • Given, $ cosec39{}^\circ =x $ Then, $ \frac{1}{cose{c^{2}}51{}^\circ }+{{\sin }^{2}}39{}^\circ +{{\tan }^{2}}51{}^\circ $ $ -\frac{1}{{{\sin }^{2}}51{}^\circ \cdot {{\sec }^{2}}39{}^\circ } $ $ ={{\sin }^{2}}51{}^\circ +{{\sin }^{2}}39{}^\circ +{{\tan }^{2}}(90{}^\circ -39{}^\circ ) $ $ -\frac{1}{{{\sin }^{2}}(90{}^\circ -39{}^\circ )\cdot {{\sec }^{2}}39{}^\circ } $ $ ={{\cos }^{2}}39{}^\circ +{{\sin }^{2}}39{}^\circ +{{\cot }^{2}}39{}^\circ -\frac{1}{{{\cos }^{2}}39{}^\circ \cdot {{\sec }^{2}}39{}^\circ } $ $ =1+{{\cot }^{2}}39{}^\circ -1 $ $ =cose{c^{2}}39{}^\circ -1 $ $ [\because 1+{{\cot }^{2}}\theta =cose{c^{2}}\theta ] $ $ =x^{2}-1 $