Quantitative Aptitude Ques 1106

Question: Numbers $ a _1, $ $ a _2, $ $ a _3, $ $ a _4, $ $ a _5,…, $ $ a _{24} $ with common difference = 10, are in arithmetic progression and $ a _1+a _5+a _{10}+a _{15}+a _{20}+a _{25}=225. $ The value of $ a _1+a _2+a _3+a _4+a _5+…+a _{23}+a _{24} $ is

Options:

A) 525

B) 725

C) 860

D) 900

Show Answer

Answer:

Correct Answer: C

Solution:

  • As $ a _1, $ $ a _2, $ $ a _3, $ $ a _4,…., $ $ a _{24} $ are in AP. So, let $ a _2-a _1=a _3-a _2=a _4-a _3=….=d $

$ \therefore $ $ a _2=a _1+d $
$ \Rightarrow $ $ a _3=a _1+2d $ $ a _4=a _1+3d $
$ \Rightarrow $ $ a _{24}=a _1+23d $ According to the question, $ a _1+a _5+a _{10}+a _{15}+a _{20}+a _{25}=225 $ $ a _1(a _1+4d)+(a _1+9d)+(a _1+14d) $ $ +(a _1+19d)+(a _1+24d)=225 $

$ \Rightarrow $ $ 6a _1+70d=225 $ … (i) Now, $ a _1+a _2+a _3+a _4+…+a _{24} $ $ =a _1+(a _1+d)+(a _1+2d)+(a _1+3d) $ $ +…+(a _1+23d) $ $ =24a _1+d(1+2+3+4+5+…+23) $ $ =24a _1+d( \frac{23\times 24}{2} ) $ $ =24a _1+276d=4(6a _1+69d) $ $ =4(225-70d+69d) $ [from Eq. (i)] $ =900-4d $ $ =900-40=860 $ $ [\because d=10,\text{given }] $