Quantitative Aptitude Ques 1093
Question: The areas of three consecutive faces of a cuboid are $ 12cm^{2}, $ $ 20cm^{2} $ and $ 15cm^{2}, $ then the volume (in $ cm^{3} $ ) of the cuboid is
Options:
A) 3000
B) 100
C) 80
D) 60
Show Answer
Answer:
Correct Answer: C
Solution:
- [c] If the length, breadth and height of the cuboid be x, y and z cm respectively, then $ xy=12, $ $ yz=20, $ $ zx=15 $
$ \therefore $ $ x^{2}y^{2}z^{2}=12\times 20\times 15=3600cm^{6} $
$ \therefore $ $ V=xyz=\sqrt{3200}=60cm^{3} $