Quantitative Aptitude Ques 1089

Question: In what ratio is the line segment joining the points $ A,(6,3) $ and $ B,(-,2,-,5) $ divided by the X-axis?

Options:

A) 3 : 2

B) 3 : 5

C) 2 : 3

D) 2 : 5

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Let X-axis cut the join of $ A,(6,3) $ and $ B,(-,2,,-5) $ in the ratio at $ k:1 $ the point P. Then, coordinates of P are $ ( \frac{-,2k+6}{k+1},\frac{-,5k+3}{k+1} ). $ But P lies on X-axis. So its ordinate is 0.

$ \therefore $ $ \frac{-,5k+3}{k+1}=0 $

$ \Rightarrow $ $ -,5k+3=0 $
$ \Rightarrow $ $ k=\frac{3}{5} $ Hence, required ratio is $ \frac{3}{5} $ i.e. $ 3:5. $