Question: In what ratio is the line segment joining the points $ A,(6,3) $ and $ B,(-,2,-,5) $ divided by the X-axis?
Options:
A) 3 : 2
B) 3 : 5
C) 2 : 3
D) 2 : 5
Show Answer
Answer:
Correct Answer: B
Solution:
- [b] Let X-axis cut the join of $ A,(6,3) $ and $ B,(-,2,,-5) $ in the ratio at $ k:1 $ the point P.
Then, coordinates of P are $ ( \frac{-,2k+6}{k+1},\frac{-,5k+3}{k+1} ). $
But P lies on X-axis. So its ordinate is 0.
$ \therefore $ $ \frac{-,5k+3}{k+1}=0 $
$ \Rightarrow $ $ -,5k+3=0 $
$ \Rightarrow $ $ k=\frac{3}{5} $
Hence, required ratio is $ \frac{3}{5} $ i.e. $ 3:5. $