Quantitative Aptitude Ques 1084

Question: If $ \cot \theta =\frac{8}{15}, $ what is the value of $ \sqrt{\frac{1-\cos \theta }{1+\cos \theta }}, $ where $ \theta $ is a positive acute angle?

Options:

A) $ \frac{1}{5} $

B) $ \frac{2}{5} $

C) $ \frac{3}{5} $

D) $ \frac{4}{5} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] $ \cot \theta =\frac{8}{15}=\frac{Base}{Perpendicular} $

$ \therefore $ $ AC=\sqrt{15^{2}+8^{2}} $ $ =\sqrt{225+64}=\sqrt{289}=17 $

$ \therefore $ $ \sqrt{\frac{1-\cos \theta }{1+\cos \theta }}=\sqrt{\frac{1-\frac{8}{17}}{1+\frac{8}{17}}} $ $ =\sqrt{\frac{\frac{9}{17}}{\frac{25}{17}}}=\sqrt{\frac{9}{15}}=\frac{3}{5} $