Quantitative Aptitude Ques 1072
Question: If $ x+\frac{1}{x}=3, $ then the value of $ \frac{3x^{2}-4x+3}{x^{2}-x+1} $ is
Options:
A) $ \frac{4}{3} $
B) $ \frac{3}{2} $
C) $ \frac{5}{2} $
D) $ \frac{5}{3} $
Show Answer
Answer:
Correct Answer: C
Solution:
- [c] Given, $ ( x+\frac{1}{x} )=3, $
Given function $ =\frac{3x^{2}-4x+3}{x^{2}-x+1}=\frac{x( 3x-4+\frac{3}{x} )}{x( x-1+\frac{1}{x} )} $
$ =\frac{3x+\frac{3}{x}-4}{x+\frac{1}{x}-1}=\frac{3( x+\frac{1}{x} )-4}{( x+\frac{1}{x} )-1} $
$ =\frac{3\times 3-4}{3-1}=\frac{9-4}{2}=\frac{5}{2} $