A) $ 40{}^\circ $
B) $ 60{}^\circ $
C) $ 70{}^\circ $
D) $ 90{}^\circ $
Correct Answer: C
$ \therefore $ $ \angle BOC=2\times 85{}^\circ =170{}^\circ $ [since, angle subtended by an arc at the centre of a circle is twice the angle subtended by the arc at any point on the remaining part of circle] In $ \Delta BOC, $ $ OB=OC $ [radii of circle] So, $ \angle OBC=\angle OCB $ Now, $ \angle BOC+\angle OBC+\angle OCB=180{}^\circ $
$ \Rightarrow $ $ 170{}^\circ +\angle OBC+\angle OBC=180{}^\circ $
$ \Rightarrow $ $ 2\angle OBC=180{}^\circ -170{}^\circ $
$ \Rightarrow $ $ \angle OBC=\frac{10{}^\circ }{2}=5{}^\circ $ Now, $ \angle OCB+\angle OCA=75{}^\circ $ $ \angle OCA=75{}^\circ -5{}^\circ =70{}^\circ $ In $ \Delta AOC, $ $ OC=OA $ [radii of circle] so that $ \angle OCA=\angle OAC=70{}^\circ $