Quantitative Aptitude Ques 1025

Question: The sum of radii of two spheres is 10 cm and the sum of their volumes is $ 880cm^{3}. $ What will be the product of their radii?

Options:

A) $ 21 $

B) $ 26\frac{1}{3} $

C) $ 33\frac{1}{3} $

D) $ 70 $

Show Answer

Answer:

Correct Answer: B

Solution:

  • Let $ r _1 $ and $ r _2 $ be the radii of sphere. Given, $ r _1+r _2=10 $ … (i) and volume = 880

$ \Rightarrow $ $ \frac{4}{3}\pi (r_1^{3}+r_2^{3})=880 $

$ \Rightarrow $ $ r_1^{3}+r_2^{3}=\frac{880\times 3\times 7}{22\times 4}=210 $ … (ii) On cubing both sides of Eq. (i), we get $ {{(r _1+r _2)}^{3}}=1000 $

$ \Rightarrow $ $ r_1^{3}+r_2^{3}+3r _1r _2(r _1+r _2)=1000 $

$ \Rightarrow $ $ 210+3r _1r _2(10)=1000 $

$ \Rightarrow $ $ 30r _1r _2=1000-210=790 $

$ \Rightarrow $ $ r _1r _2=\frac{790}{30}=\frac{79}{3}=26\frac{1}{3} $