Analytics Dashboard
Analytics Dashboard
Overview
The SATHEE IBPS Analytics Dashboard provides comprehensive insights into user behavior, learning patterns, content performance, and platform usage. It enables data-driven decision making for continuous improvement of the learning experience.
Dashboard Architecture
Real-time Data Pipeline
data_flow:
collection:
- user_interactions
- page_views
- quiz_attempts
- video_watch_time
- search_queries
- feedback_submissions
processing:
- event_streaming
- real_time_aggregation
- sentiment_analysis
- pattern_detection
- anomaly_detection
storage:
- time_series_db
- analytics_warehouse
- cache_layer
- backup_system
visualization:
- real_time_dashboards
- custom_reports
- alert_system
- export_functionality
1. User Engagement Metrics
Real-time Engagement Dashboard
class EngagementAnalytics {
constructor() {
this.metrics = {
activeUsers: new Map(),
sessionDuration: new Map(),
pageViews: new Map(),
interactions: new Map(),
bounceRate: new Map()
};
}
trackUserActivity(userId, activity) {
const timestamp = Date.now();
const userMetrics = this.getOrCreateUserMetrics(userId);
switch (activity.type) {
case 'page_view':
this.trackPageView(userMetrics, activity.data);
break;
case 'interaction':
this.trackInteraction(userMetrics, activity.data);
break;
case 'quiz_attempt':
this.trackQuizActivity(userMetrics, activity.data);
break;
case 'video_watch':
this.trackVideoEngagement(userMetrics, activity.data);
break;
}
this.updateRealTimeMetrics(userId, userMetrics);
}
trackPageView(userMetrics, data) {
userMetrics.pageViews.push({
timestamp: Date.now(),
page: data.page,
duration: 0,
topic: data.topic,
examType: data.examType
});
// Track time on previous page
if (userMetrics.pageViews.length > 1) {
const prevPage = userMetrics.pageViews[userMetrics.pageViews.length - 2];
prevPage.duration = Date.now() - prevPage.timestamp;
}
// Update topic engagement
if (data.topic) {
userMetrics.topicEngagement[data.topic] =
(userMetrics.topicEngagement[data.topic] || 0) + 1;
}
}
calculateEngagementScore(userId) {
const userMetrics = this.metrics.activeUsers.get(userId);
if (!userMetrics) return 0;
const weights = {
pageViews: 0.2,
sessionDuration: 0.3,
interactions: 0.25,
quizPerformance: 0.15,
consistency: 0.1
};
const normalizedMetrics = {
pageViews: Math.min(userMetrics.pageViews.length / 10, 1),
sessionDuration: Math.min(userMetrics.totalSessionTime / 3600000, 1), // 1 hour max
interactions: Math.min(userMetrics.interactions.length / 20, 1),
quizPerformance: userMetrics.averageQuizScore / 100,
consistency: this.calculateConsistencyScore(userMetrics)
};
return Object.entries(weights).reduce((score, [metric, weight]) => {
return score + (normalizedMetrics[metric] * weight);
}, 0);
}
}
Engagement Dashboard Components
<div class="analytics-dashboard">
<!-- Real-time Overview -->
<section class="real-time-metrics">
<h2>Live Platform Activity</h2>
<div class="metric-cards">
<div class="metric-card">
<h3>Active Users</h3>
<div class="metric-value" id="active-users">0</div>
<div class="metric-change" id="active-users-change">+0%</div>
</div>
<div class="metric-card">
<h3>Current Sessions</h3>
<div class="metric-value" id="current-sessions">0</div>
<div class="metric-change" id="sessions-change">+0%</div>
</div>
<div class="metric-card">
<h3>Avg. Session Duration</h3>
<div class="metric-value" id="avg-duration">0m</div>
<div class="metric-change" id="duration-change">+0%</div>
</div>
<div class="metric-card">
<h3>Engagement Rate</h3>
<div class="metric-value" id="engagement-rate">0%</div>
<div class="metric-change" id="engagement-change">+0%</div>
</div>
</div>
</section>
<!-- Geographic Distribution -->
<section class="geographic-analytics">
<h2>User Distribution by Location</h2>
<div class="map-container">
<div id="user-map" class="interactive-map"></div>
<div class="location-stats">
<table id="top-locations">
<thead>
<tr><th>Location</th><th>Users</th><th>Growth</th></tr>
</thead>
<tbody></tbody>
</table>
</div>
</div>
</section>
<!-- Content Heatmap -->
<section class="content-analytics">
<h2>Content Engagement Heatmap</h2>
<div class="heatmap-container">
<div id="content-heatmap"></div>
<div class="heatmap-controls">
<select id="heatmap-dimension">
<option value="page_views">Page Views</option>
<option value="time_spent">Time Spent</option>
<option value="completion_rate">Completion Rate</option>
<option value="quiz_performance">Quiz Performance</option>
</select>
<select id="heatmap-exam">
<option value="all">All Exams</option>
<option value="ibps-po">IBPS PO</option>
<option value="ibps-clerk">IBPS Clerk</option>
</select>
</div>
</div>
</section>
</div>
2. Learning Progress Tracking
Student Progress Analytics
class LearningProgressAnalytics {
constructor() {
this.progressData = new Map();
this.learningPaths = new Map();
this.milestones = new Map();
}
trackProgress(userId, progressUpdate) {
const userProgress = this.getOrCreateProgress(userId);
// Update topic mastery
if (progressUpdate.topic) {
this.updateTopicMastery(userProgress, progressUpdate);
}
// Update learning path progress
if (progressUpdate.pathId) {
this.updatePathProgress(userProgress, progressUpdate);
}
// Check for milestone achievements
this.checkMilestones(userProgress);
// Calculate learning velocity
this.updateLearningVelocity(userProgress);
// Generate insights
return this.generateProgressInsights(userProgress);
}
updateTopicMastery(userProgress, update) {
const topic = update.topic;
if (!userProgress.topicMastery[topic]) {
userProgress.topicMastery[topic] = {
level: 0,
confidence: 0,
practiceTime: 0,
quizScores: [],
lastAccessed: null
};
}
const mastery = userProgress.topicMastery[topic];
// Update based on activity type
switch (update.activity) {
case 'theory_completed':
mastery.level = Math.max(mastery.level, 1);
break;
case 'practice_completed':
mastery.level = Math.max(mastery.level, 2);
break;
case 'quiz_passed':
mastery.quizScores.push(update.score);
mastery.level = Math.max(mastery.level, 3);
break;
case 'revision_completed':
mastery.level = Math.max(mastery.level, 4);
break;
}
// Calculate confidence based on consistency
mastery.confidence = this.calculateConfidence(mastery.quizScores);
mastery.practiceTime += update.timeSpent || 0;
mastery.lastAccessed = new Date();
}
generateProgressInsights(userProgress) {
const insights = [];
// Learning velocity analysis
if (userProgress.learningVelocity < 0.5) {
insights.push({
type: 'warning',
message: 'Learning pace is slower than recommended',
suggestion: 'Consider increasing daily study time or focusing on weaker areas',
priority: 'medium'
});
}
// Strengths and weaknesses
const analysis = this.analyzeStrengthsWeaknesses(userProgress);
if (analysis.weaknesses.length > 0) {
insights.push({
type: 'improvement',
message: `Focus areas: ${analysis.weaknesses.slice(0, 3).join(', ')}`,
suggestion: 'Dedicate extra practice time to these topics',
priority: 'high'
});
}
// Progress consistency
const consistency = this.calculateConsistency(userProgress);
if (consistency < 0.7) {
insights.push({
type: 'consistency',
message: 'Study consistency could be improved',
suggestion: 'Try to maintain a regular study schedule',
priority: 'medium'
});
}
return insights;
}
generateProgressReport(userId, timeRange) {
const userProgress = this.progressData.get(userId);
if (!userProgress) return null;
return {
summary: {
overallProgress: this.calculateOverallProgress(userProgress),
learningVelocity: userProgress.learningVelocity,
studyStreak: userProgress.studyStreak,
totalStudyTime: userProgress.totalStudyTime
},
topicMastery: userProgress.topicMastery,
strengths: this.identifyStrengths(userProgress),
improvementAreas: this.identifyImprovementAreas(userProgress),
recommendations: this.generatePersonalizedRecommendations(userProgress),
achievements: userProgress.achievements,
nextMilestones: this.getNextMilestones(userProgress)
};
}
}
Learning Analytics Dashboard
<section class="learning-analytics">
<h2>Student Learning Progress</h2>
<!-- Progress Overview -->
<div class="progress-overview">
<div class="progress-cards">
<div class="progress-card">
<h3>Overall Progress</h3>
<div class="circular-progress" id="overall-progress">
<svg width="120" height="120">
<circle class="progress-bg" cx="60" cy="60" r="50"></circle>
<circle class="progress-bar" cx="60" cy="60" r="50"></circle>
</svg>
<div class="progress-text">0%</div>
</div>
</div>
<div class="progress-card">
<h3>Study Streak</h3>
<div class="streak-display">
<span class="streak-number">0</span>
<span class="streak-unit">days</span>
<div class="streak-fire">🔥</div>
</div>
</div>
<div class="progress-card">
<h3>Learning Velocity</h3>
<div class="velocity-gauge">
<div class="gauge-value">0.0</div>
<div class="gauge-label">topics/week</div>
</div>
</div>
</div>
</div>
<!-- Topic Mastery Heatmap -->
<div class="topic-mastery-heatmap">
<h3>Topic Mastery Overview</h3>
<div class="heatmap-grid" id="mastery-heatmap">
<!-- Dynamic generation based on user progress -->
</div>
<div class="mastery-legend">
<span class="legend-item mastery-1">Beginner</span>
<span class="legend-item mastery-2">Developing</span>
<span class="legend-item mastery-3">Proficient</span>
<span class="legend-item mastery-4">Advanced</span>
</div>
</div>
<!-- Learning Path Progress -->
<div class="learning-path-progress">
<h3>Learning Path Progress</h3>
<div class="path-visualization">
<div class="path-nodes" id="path-nodes">
<!-- Dynamic path nodes based on selected learning path -->
</div>
</div>
</div>
</section>
3. Content Performance Analysis
Content Analytics Engine
class ContentPerformanceAnalytics {
constructor() {
this.contentMetrics = new Map();
this.userInteractionTracking = new Map();
this.performanceThresholds = {
lowEngagement: 0.3,
highBounceRate: 0.7,
lowCompletion: 0.4,
poorRating: 2.5
};
}
trackContentInteraction(contentId, interaction) {
if (!this.contentMetrics.has(contentId)) {
this.contentMetrics.set(contentId, {
views: 0,
uniqueViews: new Set(),
totalTimeSpent: 0,
averageTimeSpent: 0,
completionRate: 0,
bounceRate: 0,
interactions: [],
ratings: [],
feedback: [],
conversions: 0
});
}
const metrics = this.contentMetrics.get(contentId);
switch (interaction.type) {
case 'view':
metrics.views++;
metrics.uniqueViews.add(interaction.userId);
break;
case 'time_spent':
metrics.totalTimeSpent += interaction.duration;
metrics.averageTimeSpent = metrics.totalTimeSpent / metrics.views;
break;
case 'completion':
this.updateCompletionRate(contentId, interaction);
break;
case 'bounce':
this.updateBounceRate(contentId, interaction);
break;
case 'rating':
metrics.ratings.push(interaction.rating);
break;
case 'conversion':
metrics.conversions++;
break;
}
this.analyzePerformance(contentId);
}
analyzePerformance(contentId) {
const metrics = this.contentMetrics.get(contentId);
const analysis = {
performance: 'good',
issues: [],
recommendations: [],
score: this.calculatePerformanceScore(metrics)
};
// Check for performance issues
if (metrics.averageTimeSpent < 30000) { // Less than 30 seconds
analysis.issues.push('Low engagement time');
analysis.recommendations.push('Improve content introduction and hooks');
}
if (metrics.bounceRate > this.performanceThresholds.highBounceRate) {
analysis.issues.push('High bounce rate');
analysis.recommendations.push('Review content structure and navigation');
}
if (metrics.completionRate < this.performanceThresholds.lowCompletion) {
analysis.issues.push('Low completion rate');
analysis.recommendations.push('Check content length and difficulty progression');
}
const avgRating = metrics.ratings.reduce((a, b) => a + b, 0) / metrics.ratings.length;
if (avgRating < this.performanceThresholds.poorRating) {
analysis.issues.push('Poor user ratings');
analysis.recommendations.push('Address user feedback and content quality');
}
// Determine overall performance
if (analysis.issues.length > 0) {
analysis.performance = analysis.score < 50 ? 'poor' : 'needs_improvement';
} else if (analysis.score > 80) {
analysis.performance = 'excellent';
}
return analysis;
}
generateContentReport(contentId, timeRange) {
const metrics = this.contentMetrics.get(contentId);
const analysis = this.analyzePerformance(contentId);
return {
contentId: contentId,
period: timeRange,
metrics: {
views: metrics.views,
uniqueViews: metrics.uniqueViews.size,
averageTimeSpent: metrics.averageTimeSpent,
completionRate: metrics.completionRate,
bounceRate: metrics.bounceRate,
averageRating: this.calculateAverageRating(metrics.ratings),
conversionRate: this.calculateConversionRate(metrics)
},
analysis: analysis,
trends: this.calculateTrends(contentId, timeRange),
userSegments: this.analyzeUserSegments(contentId),
recommendations: this.generateContentRecommendations(analysis)
};
}
}
Content Performance Dashboard
<section class="content-performance">
<h2>Content Performance Analysis</h2>
<!-- Content Ranking Table -->
<div class="content-ranking">
<h3>Top Performing Content</h3>
<div class="ranking-controls">
<select id="ranking-metric">
<option value="engagement">Engagement</option>
<option value="completion">Completion Rate</option>
<option value="rating">User Rating</option>
<option value="conversion">Conversion</option>
</select>
<select id="ranking-period">
<option value="7d">Last 7 Days</option>
<option value="30d">Last 30 Days</option>
<option value="90d">Last 90 Days</option>
</select>
</div>
<table class="ranking-table">
<thead>
<tr>
<th>Content</th>
<th>Views</th>
<th>Engagement</th>
<th>Completion</th>
<th>Rating</th>
<th>Trend</th>
</tr>
</thead>
<tbody id="ranking-tbody">
<!-- Dynamically populated -->
</tbody>
</table>
</div>
<!-- Content Comparison -->
<div class="content-comparison">
<h3>Content Comparison</h3>
<div class="comparison-controls">
<div class="content-selector">
<label>Compare:</label>
<select id="content-compare-1" multiple>
<!-- Dynamically populated with content options -->
</select>
</div>
<div class="metric-selector">
<label>Metrics:</label>
<div class="metric-checkboxes">
<label><input type="checkbox" value="views" checked> Views</label>
<label><input type="checkbox" value="time"> Time Spent</label>
<label><input type="checkbox" value="completion"> Completion</label>
<label><input type="checkbox" value="rating"> Rating</label>
</div>
</div>
</div>
<div class="comparison-chart">
<canvas id="content-comparison-chart"></canvas>
</div>
</div>
<!-- Content Issues -->
<div class="content-issues">
<h3>Content Requiring Attention</h3>
<div class="issues-grid">
<div class="issue-card low-engagement">
<h4>Low Engagement</h4>
<div class="issue-count" id="low-engagement-count">0</div>
<div class="issue-items" id="low-engagement-items">
<!-- List of content with low engagement -->
</div>
</div>
<div class="issue-card high-bounce">
<h4>High Bounce Rate</h4>
<div class="issue-count" id="high-bounce-count">0</div>
<div class="issue-items" id="high-bounce-items">
<!-- List of content with high bounce rate -->
</div>
</div>
<div class="issue-card poor-rating">
<h4>Poor Ratings</h4>
<div class="issue-count" id="poor-rating-count">0</div>
<div class="issue-items" id="poor-rating-items">
<!-- List of content with poor ratings -->
</div>
</div>
</div>
</div>
</section>
4. Drop-off Point Identification
Funnel Analysis System
class FunnelAnalytics {
constructor() {
this.funnels = new Map();
this.dropOffPoints = new Map();
this.conversionPaths = new Map();
}
defineFunnel(funnelId, steps) {
this.funnels.set(funnelId, {
id: funnelId,
steps: steps,
users: new Map(),
conversions: 0,
dropOffAnalysis: new Map()
});
}
trackFunnelStep(funnelId, userId, stepId, additionalData = {}) {
const funnel = this.funnels.get(funnelId);
if (!funnel) return;
if (!funnel.users.has(userId)) {
funnel.users.set(userId, {
currentStep: 0,
stepsCompleted: [],
startTime: Date.now(),
lastActivity: Date.now(),
metadata: additionalData
});
}
const user = funnel.users.get(userId);
const stepIndex = funnel.steps.findIndex(step => step.id === stepId);
if (stepIndex > user.currentStep) {
// Track drop-off from previous steps
for (let i = user.currentStep; i < stepIndex; i++) {
this.trackDropOff(funnelId, funnel.steps[i].id, userId, 'skipped');
}
user.currentStep = stepIndex;
user.stepsCompleted.push({
stepId: stepId,
timestamp: Date.now(),
timeSpent: Date.now() - user.lastActivity,
metadata: additionalData
});
user.lastActivity = Date.now();
}
// Check for conversion
if (stepIndex === funnel.steps.length - 1) {
funnel.conversions++;
this.trackConversion(funnelId, userId, additionalData);
}
}
analyzeDropOffs(funnelId) {
const funnel = this.funnels.get(funnelId);
const analysis = {
totalUsers: funnel.users.size,
stepAnalytics: [],
criticalDropOffs: [],
recommendations: []
};
// Analyze each step
funnel.steps.forEach((step, index) => {
const usersAtStep = Array.from(funnel.users.values())
.filter(user => user.currentStep >= index).length;
const usersCompletedStep = Array.from(funnel.users.values())
.filter(user => user.stepsCompleted.some(s => s.stepId === step.id)).length;
const dropOffRate = 1 - (usersCompletedStep / usersAtStep);
analysis.stepAnalytics.push({
stepId: step.id,
stepName: step.name,
usersAtStep: usersAtStep,
usersCompleted: usersCompletedStep,
dropOffRate: dropOffRate,
averageTimeSpent: this.calculateAverageTimeAtStep(funnel, step.id)
});
// Identify critical drop-offs
if (dropOffRate > 0.3) {
analysis.criticalDropOffs.push({
stepId: step.id,
dropOffRate: dropOffRate,
severity: dropOffRate > 0.5 ? 'critical' : 'high',
possibleReasons: this.identifyDropOffReasons(funnelId, step.id),
affectedUsers: usersAtStep - usersCompletedStep
});
}
});
// Generate recommendations
analysis.recommendations = this.generateFunnelRecommendations(analysis);
return analysis;
}
generateDropOffReport(funnelId, timeRange) {
const analysis = this.analyzeDropOffs(funnelId);
const funnel = this.funnels.get(funnelId);
return {
funnelId: funnelId,
period: timeRange,
overview: {
totalUsers: analysis.totalUsers,
overallConversionRate: funnel.conversions / analysis.totalUsers,
totalDropOffs: analysis.totalUsers - funnel.conversions
},
stepAnalysis: analysis.stepAnalytics,
criticalDropOffs: analysis.criticalDropOffs,
userSegments: this.analyzeDropOffBySegments(funnelId),
timeAnalysis: this.analyzeDropOffByTime(funnelId, timeRange),
recommendations: analysis.recommendations,
suggestedAtests: this.generateAtestsuggestions(analysis)
};
}
}
Funnel Visualization Dashboard
<section class="funnel-analytics">
<h2>Conversion Funnel Analysis</h2>
<!-- Funnel Selection -->
<div class="funnel-selector">
<label>Select Funnel:</label>
<select id="funnel-select">
<option value="learning-journey">Learning Journey</option>
<option value="quiz-completion">Quiz Completion</option>
<option value="content-consumption">Content Consumption</option>
<option value="purchase-funnel">Premium Purchase</option>
</select>
</div>
<!-- Funnel Visualization -->
<div class="funnel-visualization">
<div class="funnel-chart-container">
<canvas id="funnel-chart"></canvas>
</div>
<div class="funnel-steps-details">
<table class="funnel-steps-table">
<thead>
<tr>
<th>Step</th>
<th>Users</th>
<th>Conversion</th>
<th>Drop-off</th>
<th>Avg. Time</th>
<th>Actions</th>
</tr>
</thead>
<tbody id="funnel-steps-tbody">
<!-- Dynamically populated -->
</tbody>
</table>
</div>
</div>
<!-- Drop-off Analysis -->
<div class="drop-off-analysis">
<h3>Critical Drop-off Points</h3>
<div class="drop-off-cards" id="drop-off-cards">
<!-- Dynamically populated with critical drop-offs -->
</div>
</div>
<!-- User Path Analysis -->
<div class="user-path-analysis">
<h3>User Journey Paths</h3>
<div class="path-controls">
<select id="path-segment">
<option value="all">All Users</option>
<option value="converted">Converted Users</option>
<option value="dropped">Dropped Users</option>
</select>
<select id="path-timeframe">
<option value="24h">Last 24 Hours</option>
<option value="7d">Last 7 Days</option>
<option value="30d">Last 30 Days</option>
</select>
</div>
<div class="path-visualization">
<div id="user-paths-chart"></div>
</div>
</div>
</section>
5. Conversion Funnel Analysis
Multi-dimensional Conversion Tracking
class ConversionAnalytics {
constructor() {
this.conversions = new Map();
this.attributionModels = new Map();
this.cohortAnalysis = new Map();
}
trackConversion(userId, conversionType, value, metadata = {}) {
const conversion = {
userId: userId,
type: conversionType,
value: value,
timestamp: Date.now(),
metadata: metadata,
userJourney: this.reconstructUserJourney(userId),
attribution: this.calculateAttribution(userId, conversionType),
cohort: this.assignCohort(userId)
};
if (!this.conversions.has(conversionType)) {
this.conversions.set(conversionType, []);
}
this.conversions.get(conversionType).push(conversion);
this.updateConversionMetrics(conversionType, conversion);
}
calculateAttribution(userId, conversionType) {
const userJourney = this.getUserJourney(userId);
const touchpoints = userJourney.touchpoints;
const attributionModels = {
last_click: this.lastClickAttribution(touchpoints),
first_click: this.firstClickAttribution(touchpoints),
linear: this.linearAttribution(touchpoints),
time_decay: this.timeDecayAttribution(touchpoints),
position_based: this.positionBasedAttribution(touchpoints)
};
return attributionModels;
}
generateConversionReport(conversionType, timeRange, segmentation = {}) {
const conversions = this.getConversions(conversionType, timeRange, segmentation);
return {
overview: {
totalConversions: conversions.length,
conversionValue: conversions.reduce((sum, c) => sum + c.value, 0),
conversionRate: this.calculateConversionRate(conversionType, timeRange),
averageOrderValue: this.calculateAOV(conversions)
},
trends: this.analyzeConversionTrends(conversions, timeRange),
attribution: this.analyzeAttribution(conversions),
segments: this.analyzeConversionSegments(conversions),
funnels: this.analyzeConversionFunnels(conversions),
recommendations: this.generateConversionRecommendations(conversions)
};
}
predictConversionProbability(userId, conversionType) {
const userFeatures = this.extractUserFeatures(userId);
const historicalData = this.getHistoricalConversionData(conversionType);
// Simple probability calculation (in production, use ML models)
const baseProbability = this.calculateBaseProbability(conversionType);
const userScore = this.calculateUserScore(userFeatures);
const contextualFactors = this.getContextualFactors(userId);
return {
probability: Math.min(baseProbability * userScore * contextualFactors, 1),
confidence: this.calculateConfidence(userFeatures, historicalData),
factors: this.getInfluencingFactors(userFeatures),
recommendations: this.getConversionRecommendations(userId, conversionType)
};
}
}
Implementation Guidelines
Data Collection Strategy
data_collection_points:
page_interactions:
- page_views
- time_on_page
- scroll_depth
- click_events
- form_interactions
learning_activities:
- video_watch_time
- quiz_attempts
- practice_completions
- note_taking
- bookmarking
user_behavior:
- search_queries
- navigation_patterns
- content_preferences
- device_usage
- session_duration
Privacy and Compliance
- Anonymize user data for analysis
- Implement data retention policies
- Ensure GDPR compliance
- Provide opt-out mechanisms
- Secure data transmission and storage
This comprehensive analytics dashboard provides:
- Real-time User Engagement Monitoring: Live tracking of user activity and platform usage
- Learning Progress Analytics: Detailed tracking of student learning patterns and progress
- Content Performance Analysis: Deep insights into content effectiveness and user engagement
- Drop-off Point Identification: Funnel analysis to identify where users disengage
- Conversion Funnel Analysis: Multi-dimensional tracking of user conversions and attribution
The system is designed to provide actionable insights that help continuously improve the learning experience and platform performance.